

Guía de Diagnóstico Rápido y Resumen Final

Módulo 4 | Material de Apoyo Descargable Un Recurso del Centro de Entrenamiento RGC

Guía de Diagnóstico Rápido - Las 5 Fallas Más Comunes

Esta guía está diseñada para ayudarte a diagnosticar problemas en campo de forma estructurada, basándose en los errores de instalación más frecuentes.

Síntoma Observado	Error Probable	Causa Raíz y Consecuencia	Qué Verificar en Campo
El compresor se apaga por protector térmico y las presiones de descarga son muy altas.	Vacío Insuficiente	La humedad y los gases no condensables en el sistema elevan la presión de descarga. La humedad reacciona con el aceite formando ácidos corrosivos.	1. Verificar la limpieza del condensador. 2. Si está limpio, recuperar el refrigerante, cambiar filtros y realizar un vacío profundo (<250 micrones) usando el método de triple vacío.
El compresor presenta un ruido mecánico fuerte y rítmico ("golpeteo").	Falta de Retorno de Aceite	Un mal diseño de tuberías (falta de sifones, inclinación incorrecta) impide que el aceite regrese al cárter, causando una lubricación deficiente y desgaste mecánico severo.	1. Verificar el nivel de aceite en el visor (si lo tiene). 2. Inspeccionar el diseño de la línea de succión en busca de sifones en tramos verticales y la correcta inclinación.

El sistema no enfría lo suficiente, las presiones de succión son bajas y el sobrecalentamien to es alto.	Carga de Refrigerante Incorrecta (Falta de refrigerante)	Una carga incompleta reduce la masa de refrigerante que circula, disminuyendo la capacidad del evaporador y causando que el compresor se sobrecaliente.	1. Verificar el subenfriamiento a la salida del condensador (será bajo o nulo). 2. Buscar fugas en el sistema. 3. Recuperar y cargar por peso la cantidad correcta de refrigerante.
El compresor vibra pero no arranca, o se dispara el breaker/fusible al intentar arrancar.	Protección Eléctrica Deficiente o Falla	Un contactor dañado, terminales flojos, bajo voltaje o la falta de un protector de fase pueden causar una falla eléctrica catastrófica en el motor del compresor.	 (Con el sistema sin energía) Medir la continuidad y resistencia a tierra de los devanados. Verificar el estado del contactor. Medir el voltaje de alimentación.
El aceite del compresor está oscuro o huele a quemado (ácido).	Contaminación del Sistema	Soldar sin flujo de nitrógeno crea óxido de cobre (carbonilla) que circula por el sistema. Una quemadura previa sin una limpieza adecuada deja ácido residual.	1. Realizar una prueba de acidez del aceite. 2. Si el resultado es positivo, es necesario un barrido completo del sistema, cambio de aceite y la instalación de filtros de succión y líquido de alta capacidad.

Resumen Final y Parámetros Vitales

Las 5 Marcas de un Técnico Profesional

Un trabajo de calidad se define por seguir las mejores prácticas. Recuerda siempre estos 5 puntos clave en cada instalación:

- 1. **Soldadura con Nitrógeno:** Garantiza un sistema internamente limpio y libre de contaminantes abrasivos.
- 2. **Prueba de Estanqueidad:** Asegura un sistema hermético ANTES de hacer el vacío. Ahorra tiempo y previene problemas futuros.
- 3. Vacío Profundo (<250 Micrones): Garantiza un sistema seco y libre de no condensables, protegiendo el aceite y los componentes.
- 4. **Protecciones Eléctricas Completas:** Es el seguro de vida del compresor. Un protector de fase y un protector de sobrecarga no son opcionales.
- 5. **Verificación de Parámetros:** No termines un trabajo sin medir. El sobrecalentamiento, subenfriamiento y consumo eléctrico son los "signos vitales" del sistema.

Tabla de Parámetros Vitales en Puesta en Marcha

Utiliza esta tabla como referencia rápida para verificar que el sistema está operando de manera óptima después de la instalación.

Parámetro	Dónde se Mide	Rango Típico Ideal	Qué Indica
Sobrecalentamien to	En la línea de succión, a la entrada del compresor.	5 a 10 °C (9 a 18 °F)	Asegura que solo llegue vapor al compresor, protegiéndolo del retorno de líquido.
Subenfriamiento	En la línea de líquido, a la salida del condensador.	3 a 6 ° C (5 a 11 °F)	Garantiza una columna 100% de líquido a la entrada de la válvula de expansión, maximizando la eficiencia.

Consumo de Corriente (Amperaje)	En los cables de alimentación del compresor.	No debe exceder el RLA (Rated Load Amps) indicado en la placa del compresor.	Un amperaje elevado puede indicar altas presiones de descarga, bajo voltaje o un problema mecánico.
---------------------------------------	--	--	---