

Checklist de Instalación y Puesta en Marcha del Compresor Scroll

Módulo 3 | Material de Apoyo Descargable Un Recurso del Centro de Entrenamiento RGC

Preparación Mecánica y Eléctrica

Una instalación profesional comienza con una preparación meticulosa. Utiliza esta checklist para asegurar que la base mecánica y eléctrica del sistema sea sólida y confiable antes de proceder con la presurización y el vacío.

Fase 1: Preparación y Montaje Mecánico

Paso	Verificación y Acción	
1.1	Inspección Inicial: Verificar que el compresor no tenga daños de transporte. Confirmar que el modelo, voltaje y refrigerante de la placa coinciden con los del sistema.	
1.2	Limpieza del Sistema: Si es un reemplazo por quemadura, realizar un barrido completo con nitrógeno y agente de limpieza. Instalar filtros de succión y líquido de alta capacidad.	
1.3	Montaje del Compresor: Instalar el compresor sobre sus gomas de vibración (grommets) y asegurarse de que esté perfectamente nivelado.	
1.4	Diseño de Tuberías (Retorno de Aceite): En líneas de succión verticales, instalar sifones cada 3-4 metros de elevación. Asegurar una inclinación del 1-2% hacia el compresor en tramos horizontales.	
1.5	Diseño de Tuberías (Vibración): Instalar bucles de vibración ("shock loops") en las líneas de succión y descarga, lo más cerca posible del compresor, para absorber frecuencias y prevenir fugas por fatiga del material.	
1.6	Soldadura: Realizar todas las conexiones de tubería utilizando un flujo constante de nitrógeno seco a baja presión (1-2 PSI) para prevenir la formación de óxido de cobre interno.	

Fase 2: Conexiones y Protecciones Eléctricas

Paso	Verificación y Acción	
2.1	Verificación de Voltaje: Medir el voltaje de alimentación y asegurarse de que esté dentro del +/- 10% del valor nominal del compresor.	
2.2	Calibre de Cables: Confirmar que el calibre de los cables de potencia es el adecuado para la distancia y el amperaje (RLA) del compresor.	
2.3	Contactor y Terminales: Verificar que el contactor sea del tamaño correcto y que sus contactos no estén quemados. Apretar firmemente todos los terminales eléctricos.	
2.4	Protecciones (Trifásico): Instalar y configurar correctamente un protector de fase que monitoree pérdida de fase, inversión y desbalance de voltaje.	
2.5	Protecciones (General): Instalar y calibrar un protector de sobrecarga externo según el amperaje nominal (RLA) del compresor.	

Hermeticidad, Vacío, Carga y Verificación Final

Esta es la fase crítica que garantiza un sistema limpio, seco, hermético y eficiente. Sigue estos pasos en orden estricto.

Fase 3: Prueba de Estanqueidad (Fugas)

Paso	Verificación y Acción	
3.1	Presurización: Presurizar el sistema (lados de alta y baja) únicamente con nitrógeno seco. NUNCA usar oxígeno o aire comprimido.	
3.2	Presión de Prueba: Alcanzar una presión de prueba adecuada (ej. 150 PSI o según especificación del componente más débil) y cerrar la válvula del cilindro de nitrógeno.	
3.3	Estabilización y Monitoreo: Esperar 30 minutos a que la temperatura se estabilice. Luego, monitorear la presión con un manómetro de precisión durante al menos 1 hora. Si la presión cae, existe una fuga.	

3.4	Detección y Reparación: Localizar la fuga con agua jabonosa o detector electrónico. Despresurizar completamente, reparar la fuga y repetir la	
	prueba desde el paso 3.1.	

Fase 4: Proceso de Vacío Profundo

Paso	Verificación y Acción	
4.1	Conexión de Equipos: Conectar la bomba de vacío y un vacuómetro digital (micrómetro). El vacuómetro debe estar lo más lejos posible de la bomba.	
4.2	Triple Vacío (Recomendado): 1. Hacer vacío hasta 1500 micrones. 2. Romper el vacío con nitrógeno seco hasta 2 PSI y liberar. 3. Repetir. 4. Realizar el vacío final.	
4.3	Nivel de Vacío Final: Alcanzar un nivel de vacío profundo y estable por debajo de 500 micrones .	
4.4	Prueba de Estabilidad: Aislar la bomba de vacío del sistema y verificar que el nivel de vacío no suba más de 100-200 micrones en 5-10 minutos. Si sube rápidamente, aún hay humedad o una microfuga.	

Fase 5: Carga de Refrigerante y Puesta en Marcha

Paso	Verificación y Acción / Valor Registrado	
5.1	Pre-carga Inicial: Con el sistema en vacío y el compresor apagado, pre-cargar el 70% de la carga total en fase líquida por el lado de alta (en el recibidor de líquido).	
5.2	Arranque y Carga Final: Arrancar el sistema. Completar la carga lentamente por el lado de baja, asegurando que entre como vapor para no dañar las espirales.	
5.3	Verificar Sobrecalentamiento: Medir y ajustar a la entrada del compresor (5-10°C es un rango típico).	

5.4	Verificar Subenfriamiento: Medir y ajustar a la salida del condensador (3-6°C es un rango típico).	
5.5	Verificar Consumo Eléctrico: Medir el amperaje en las 3 fases	