

Guía Técnica de Referencia: Fundamentos del Compresor Scroll

Módulo 1 | Material de Apoyo Descargable Un Recurso del Centro de Entrenamiento RGC

Página 1: Anatomía Interna y Componentes Principales

Esta guía es tu referencia rápida para el corazón de la tecnología Scroll. Utilízala para identificar componentes y entender su rol crítico en el funcionamiento y la confiabilidad del compresor.

Tabla de Componentes, Funciones y Diagnóstico (Parte 1)

No	Componente	Función Clave
1	Conjunto de Espirales (Fija y Orbital)	Son el corazón del compresor. Su movimiento orbital crea y reduce bolsas de gas, comprimiendo el refrigerante de forma continua.
	Sello Flotante	Utiliza la presión del propio gas para mantener un sellado axial (vertical) perfecto entre las espirales. Compensa el desgaste normal de operación.

3	Acople de Oldham	Es un acople anti-rotación. Impide que la espiral orbital gire sobre su eje, permitiendo únicamente el movimiento orbital. Es crucial para la integridad mecánica.
4	Cigüeñal y Contrapesos	Transforma el giro del motor en el movimiento orbital de la espiral a través de un muñón excéntrico. Los contrapesos equilibran las masas para una operación suave.

Proceso de Compresión y Conceptos Clave

El Flujo de Compresión: Un Vistazo Interno

El proceso de compresión del Scroll es un ciclo continuo que ocurre en tres fases simultáneas dentro de las espirales.

- 1. Succión: El gas a baja presión es aspirado por la periferia de las espirales.
- 2. **Compresión:** A medida que la espiral orbita, las bolsas de gas se sellan y son forzadas hacia el centro. Su volumen se reduce progresivamente, aumentando la presión y la temperatura.
- 3. **Descarga:** En el centro, el gas alcanza su máxima presión y es liberado a través de un puerto de descarga central hacia la línea de alta del sistema.

Tabla de Componentes, Funciones y Diagnóstico (Parte 2)

No	Componente	Función Clave
5	Válvula de Descarga Dinámica	Actúa como una válvula check en el puerto de descarga. Impide el retorno de gas a alta presión cuando el compresor se apaga, evitando el giro inverso.
6	Válvula de Alivio (IPR)	Es una protección de seguridad. Se abre si la presión de descarga es excesiva (Dp=400 psi), desviando el gas a la succión para apagar el compresor por protector térmico.
7	Motor Eléctrico	Proporciona la potencia para el movimiento del cigüeñal. Su diseño es específico para soportar el alto par de arranque de un compresor.

Concepto Clave: El Diseño "Compliant" (Acoplamiento Flexible)

La alta eficiencia y durabilidad del compresor Scroll se debe a su capacidad de "acoplamiento flexible", que tiene dos ejes:

- Acoplamiento Axial: La libertad de movimiento vertical de la espiral orbital (gracias al Sello Flotante) le permite separarse ligeramente si una pequeña cantidad de refrigerante líquido o suciedad entra en las espirales, evitando el daño hidráulico.
- Acoplamiento Radial: La espiral orbital también puede moverse ligeramente de lado a lado, permitiendo que mantenga un contacto continuo con la espiral fija, incluso con el desgaste, asegurando un sellado óptimo